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The photooxidations of 1-6 were conducted in a dichloro-
methane-methanol (9:1) solvent system with rose bengal or 
methylene blue as sensitizer (comparable stereochemical re­
sults). For characterization the hydroperoxides were reduced 
(NaBH4) without purification to the respective allylic alcohols. 
Lithium diethylamide promoted ring opening5 of the epimeric 
epoxides provided the authentic samples necessary for estab­
lishment of stereochemical configuration. With reference to 
Table I, the data for hydrocarbons 1-5 are seen to parallel 
precisely the previously established stereoselectivities and re­
flect the anticipated enhancement of attack from the less 
congested face of the olefinic plane.1 
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Like photooxygenation of 6 proceeds at a much slower rate 
than 5 and gives rise only to the product of opposite configu­
ration. This most unusual stereochemical reversal involving 
1Ch attack from the more sterically encumbered direction 
appears to be a general reactivity pattern of hydrazides of this 
type. Thus, the TV-methyl congener of 6 and the bishomocu-
bane derivative 7 behave comparably! 

Pertinent to an understanding of these results are the report 
by Ouannis and Wilson that '02 is efficiently quenched by 
amines6 and the finding by Ogryzlo and Tang that there exists 
a good correlation between the quenching efficiency of the 
amine and its ionization potential.7 Briefly summarized, an 
increase in electron availability is conducive to an increase in 
kq. Since the pKa of a nitrogen base parallels in magnitude its 
IP and hydrazines are characterized by low pAVs,8 such 
molecules can be expected to be efficient quenchers. Indeed, 
their effectiveness toward photoexcited ketones has recently 
been established by Cohen.9 Because the capability of hydra­
zides to cause electronic relaxation of ' Ag singlet oxygen was 
less obvious,10 the ionization potentials of several representative 
molecules were measured by photoelectron spectroscopy. The 
observed IP values (8-8.6 eV)211 are remarkably low and 
therefore such functional groups are thought to be capable of 
entering into efficient charge-transfer interaction under the 
conditions of our experiments. 

Based upon such considerations, the "anomalous" behavior 
of 6, 7, and related olefins is viewed as the result of efficient 
deactivation by the hydrazide moiety of '02 approach from 
the more open anti direction. Syn attack can operate without 
incurring such interactions, although the greater level of steric 
hindrance leads to an obvious decrease in reactivity.12 
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Endoperoxidation of Conformational^ Fixed 
Norcaradienes by Singlet Oxygen. Frontier Molecular 
Orbital Basis for the Operability of 1Oi 
Quenching by Hydrazides 

Sir: 

Just as study of the allylic hydroperoxidation of various 
3-norcarenes has revealed the capability of hydrazides to 
quench ' Ag oxygen as it functions in this reaction,1 so the en­
doperoxidation of structurally related norcaradienes should 
similarly lend itself to an evaluation of a possible hydrazide 
directive effect on such (4 + 2) cycloadditions. Significantly, 
the stereochemical outcome of the two oxygenation modes 
should not be identical if the conditions of HMO perturbation 
theory are rigorously adhered to. 

The stereospecificity of norcaradiene endoperoxidation has 
been experimentally assessed in five different systems (Table 
I), two of the illustrated examples (lb, 2) having been inde­
pendently studied by others.2-3 To facilitate product identifi­
cation, the first-formed endoperoxides were thermally rear­
ranged to their trishomobenzenoid diepoxide isomers without 
loss of configuration.4 Because 1H NMR data revealed the 
cyclopropyl protons in the diepoxides to be only marginally 
shielded, the oxygen atoms are assumed to be anti to the 
three-membered ring. This important stereochemical point was 
established conclusively by x-ray crystal structure analysis of 
8 (Figure 1), the crystals of which form in the orthobombic 
system with a = 13.404, b = 15.147 (3), and c = 16.020 (4) 
A. Systematic extinctions in OkI (absent if k = Zn + I), hOl 
(absent if / = Zn + I), and hkO (absent if h = Zn + I) sug-
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Table I. Results of Norcaradiene Endoperoxidation0 

Diene Diepoxide* 1HNMR(S5CDCl3) 

<P 
Ja , X = CHz 

b ,X = 0 

X 
5p,X = CH2 

~fe,x = o 

(5a) 3.33 (s, 4), 2.23-1.60 (m, 6), 0.78 
( d , / = 5 Hz, 1), 0.47 (d,J=S Hz, 1) 

(5b)c3.4(s ,4) , 2.2-1.4 (m, 6) 

6.12 (m, 4), 3.55 (m, 2), 3.43 (m, 2), 
1.63 (d, 1), -0 .04 (d, l)d 

3.42 (d, J = 3.5 Hz, 2), 3.37 (d, J = 3.5 
Hz, 2), 2.57-1.47 (m, 6), 1.31-0.80 
(m, with d centered at 0.93 Hz, J = 
7 Hz, 8) 

C6H5 C ,6H5 

8 

(C5D5N), 7.97 (dd,/= 8 and 1.5 Hz, 2), 
7.46-7.21 (m, 3), 5.23 ( t , /= 2.5 Hz, 2), 
3.35 (d,7= 2.8 Hz, 2), 3.14 (dd,/ = 2.8 
and 1.1 Hz, 2), 2.17-1.94 (m, 4) 

aVarious solvents (CH3OH, CH2Cl2, CH3COCH3) have been employed in the 1O2 reaction with either rose bengal or methylene blue as sensi­
tizer. The endoperoxides were rearranged in chloroform or 1,2-dichloroethane at the respective reflux temperatures. 6In all cases, the illus­
trated diepoxide was the only product detected. cSee ref 2. dSee ref 3. 

gested space group Pbca and a measured and calculated (Z = 
8) density indicated one unit of composition C2OHj5N3O4 

formed in the asymmetric unit. Using graphite monochro-
mated Cu Ka radiation, 1747 reflections were judged observed 
after suitable correction and full-matrix least-squares refine­
ment converged to the unweighted residual 0.043.5'6 See 
paragraph at end of paper regarding additional supplementary 
material. 

Despite its shortcomings,7 frontier molecular orbital theory8 

is recognized to provide a most useful framework by which the 
energies (E) and coefficients (C) of the highest occupied (HO) 
and lowest unoccupied (LU) orbitals of two reacting molecules 
can be related directly to stabilization energy (AE) as well as 
relative rate for several reaction types.9 Equations 1 and 2 treat 
the general case for 1O2 as it enters into ene reaction or (4 + 
2) cycloaddition with an appropriate alkene (A)10 or diene (D). 
For simplification purposes,10 we assume that the eigenvectors 

-H O1' 
products 

AE = 

AE = 

O2, 

(D) (Ox) 

[(CHOI'CLUI + CH02'CLU2)/?] 

(A) 

(E0 — Ekw) 

[(CHOICLUI' + CHO2CLU2')P] 
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Figure 1. Computer generated drawing of the x-ray model of 8. Although 
all bond distances and angles are normal, the unusual canting of the urazole 
ring toward the epoxide oxygens should be noted. 

of the coefficients in the numerators remain reasonably con­
stant when a series of closely related alkenes or dienes is 
studied. To a first approximation then, the transition state 
energies become a function chiefly of the orbital energy dif­
ferences. Since inspection of the ionization potential (—11.09 
eV)11 and electron affinity (-0.43 eV) data12 reported for 
oxygen as well as for olefins and dienes which are reactive 
toward 1O2

1 3 indicates further that the only significant frontier 
orbital interaction is that between the olefin or diene HOMO 
and the singlet oxygen LUMO, ultimate simplification to eq 
3 and 4 results (c is a constant). 

The electronic constitutions of a number of key compounds 
as revealed by ionization potential data obtained from photo-
electron spectroscopic measurements are illustrated in Figure 
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Figure 2. Photoelectron spectroscopy results. 

-12 

Thus, antisymmetric charge-transfer interaction between 
H O M O N N and LUMOo2 is seen to comprise an entirely 
plausible quenching mechanism. Because singlet and triplet 
charge transfer complexes are energetically similar, relatively 
low level spin-orbit coupling is probably sufficient to mix the 
interacting states.17 The unusually low activation energies for 
1O2 reactions (0.1-7.5 kcal/mol)4,18 also undoubtedly con­
tribute to its sensitivity to electronic perturbation. l 3 J7b '19 

In summary, frontier MO theory has now been shown to be 
a valuable tool in assessing the regio-13 and stereospecificity 
of singlet oxygen behavior during ene and (4 + 2) cycloaddition 
reactions. Further applications of this discovery to other re­
action modes and to alternate substrate modifications are 
under active investigation. 
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2. Concerning urazoles 9-11, the HOMO's are readily as­
signable as the respective a2 (n_) bands ( -8 .6 , - 7 . 9 , and 
—7.95 eV). For 4, the TT_ + eA (antisymmetric cyclopropane 
Walsh orbital) interaction is considered to be of primary im­
portance. However, secondary interaction between the n_ and 
the in-phase and out-of-phase norcaradiene orbitals (x_ — eA, 
7T- + CA) causes a further destabilization of ir_ — eA with 
concomitant enhanced stabilization of T- + e&. Since the. 
companion energy change in n_ happens to be negligible rel­
ative to 9,14 the important net result is a dramatic destabili­
zation of X- such that it becomes the HOMO in 4. 

The significance of this phenomenon is that conventional 
approach of 1O2 to the sterically more accessible anti surface 
of 4 

O 
I 

results in preferred H O M O I - L U M O O 2 interaction ( -7 .8 -
( -0 .4) = - 7 . 4 eV) and endoperoxide formation (see 12). In 
this instance, the H O M O N N - LUMOo2 gap (-8.2 eV) is too 
large by comparison to exert any effect. But with norcarene 
11, ' O2 attack from the sterically favored anti direction leads 
to efficient quenching because interaction with the hydrazide 
moiety (HOMO N N - LUMOo2 = -7 .5 eV, cf. 13) l 5 is vastly 
more energetically rewarding than the alternative HOMOn 

c> 
II 

- LUMOo2 option ( -8 .7 eV). No such quenching can occur 
upon syn attack as in 14, but steric hindrance can be expected 
to cause kinetic retardation as is seen.' 
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Mechanism of Thermal Decomposition of Diazirine. 
Evidence for Diazomethane Intermediate 

Sir: 

The intermediacy of diazomethane in the decomposition of 
diazirine has been the subject of discussion for many years.N3 

While there is sufficient evidence for the diazomethane in­
termediate in the photolysis of diazirine,4 its presence in the 
thermal decomposition has only been implicated, and no dia­
zomethane intermediate has ever been isolated from a diazirine 
pyrolysis experiment.5"7 In one report,8 the attempted synthesis 
of 3,3-diphenyldiazirine resulted in the formation of diphen-
yldiazomethane; however, the precursory existence of diazirine 
was never verified. Only in the case of 3-methyl-3-vinyldia-
zirine has the linear diazo isomer been observed7 as its subse­
quent reaction product, 3-methylpyrazole. We wish to report 
here evidence for the formation of 1-phenyl-1-diazopentane 
(2) in the thermolysis of 3-«-butyl-3-phenyldiazirine (1). This 
represents, to the best of our knowledge, the first account of 
the isolation of a diazomethane from the thermolysis of a 
simple diazirine and serves to support the mechanism for di­
azirine decomposition shown in Scheme I. 

Scheme I 

P h ^ - C 4 H 9 Ph C4H9 Ph C4H9 

1 2 3 

Diazirine 1 was synthesized in 40% overall yield from val-
erophenone by the method of Schmitz and Ohme.9,10 Ther­
molysis of dilute Me2SO solutions (0.1 M) of 1 at 100 0 C for 
3 h resulted in a quantitative evolution of nitrogen (measured 
by gas burette) and the formation of cis- and frans-l-phe­
nyl-1-pentenes (ratio cis:trans = 1:5, determined by GLC) plus 
a small amount (<5%) of valerophenone, all (presumably) via 
carbene 3. Surprisingly, no azine was detected.11 When the 
reaction was followed by uv or ir spectroscopy, an intermediate 
species was observed to form rapidly and subsequently di­
minish; 

uvmax at 500 nm (low e) and irmax at 4.90 ix are con­
sistent with this intermediate being assigned and the diazo 
structure 2. Interruption of the reaction after 1 h followed by 
extraction with petroleum ether (30-60 0C) permitted the 
isolation of 2 along with unreacted 1 and small quantities of 
the 1-phenyl-1-pentenes. Compound 2 appears to be very 
stable, as the red petroleum ether solution remained unchanged 
at room temperature for several days. Addition of acetic acid 
to the red solution resulted in immediate discoloration and 
subsequent isolation of 1-phenyl 1-pentylacetate.12 

Table I. First-Order Rate Constants at 100.2 0C 

Uv method N2 evolution 
Solvent 10 4 Ms- ' ) 104Zr2(S-') 

Me2SO 6.75 ±0.02 2.23 ±0.16 
HOAc 5.24 ±0.07 5.78 ±0.19 

The rate of decomposition of 1 at 100.2 0 C was determined 
by measuring the disappearance of it's uvmax at 371 nm (& 1) 
and by measuring the evolved nitrogen during the reaction 
(fc2)-

13 The first-order rate constants are presented in Table 
I. That the two measurements in Me2SO solvent differ by a 
factor of three suggests that in fact two different rates are being 
measured; k \ can therefore be taken as the rate of isomeriza-
tion of 1 to 2, while Zc2 may be regarded as the rate of decom­
position of 2, giving nitrogen and 3. As such, k\ is in good 
agreement with reported rate constants for decomposition of 
other diazirines,6 while ki agrees with the reported rate con­
stant for thermal decomposition of diphenyldiazo-
methane.14 

The assignment of k\ and Zc2 above finds further support in 
their measurement in acetic acid (Table I). It is well estab­
lished that diazirine decomposition is unaffected by acid1 while 
the decomposition of diazomethanes is acid catalyzed.15 Thus 
in this case, the isomerization of 1 to 2 would be the rate de­
termining step in the overall reaction and &2 would be expected 
to equal k\, which is the experimental observation. Workup 
of the acetic acid reaction mixture resulted in the isolation of 
1-phenyl 1-pentylacetate in 75% yield, and a mixture of cis-
and trans-\-phenyl- 1-pentenes in 20% yield. 

The evidence reported here clearly establishes that the pri­
mary mode of diazirine decomposition is via its linear diazo 
isomer, as shown in Scheme I, although we cannot at present 
completely rule out the possibility that decomposition also 
occurs via a minor pathway directly to carbene. Kinetic ex­
periments on this system are in progress to further clarify these 
points. 
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